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The predictions of the mode-coupling theory of the glass transition(MCT) for the tagged-particle density-
correlation functions and the mean-squared displacement curves are compared quantitatively and in detail to
results from Newtonian- and Brownian-dynamics simulations of a polydisperse quasi-hard-sphere system close
to the glass transition. After correcting for a 17% error in the dynamical length scale and for a smaller error in
the transition density, good agreement is found over a wide range of wave numbers and up to five orders of
magnitude in time. Deviations are found at the highest densities studied, and for small wave vectors and the
mean-squared displacement. Possible error sources not related to MCT are discussed in detail, thereby identi-
fying more clearly the issues arising from the MCT approximation itself. The range of applicability of MCT for
the different types of short-time dynamics is established through asymptotic analyses of the relaxation curves,
examining the wave-number and density-dependent characteristic parameters. Approximations made in the
description of the equilibrium static structure are shown to have a remarkable effect on the predicted numerical
value for the glass-transition density. Effects of small polydispersity are also investigated, and shown to be
negligible.
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I. INTRODUCTION

Understanding the slow dynamical processes that occur
when one cools or compresses a liquid is a great challenge of
condensed matter physics. In particular in the time window
accessible to scattering experiments or molecular-dynamics
(MD) computer simulations, one observes in equilibrium a
precursor of the liquid-glass transition that is commonly
termed structural relaxation. From these experiments, a large
amount of detailed information about the equilibrium fluc-
tuations in such systems is available[1].

Many of the recent experiments on structural relaxation
were stimulated by the mode-coupling theory of the glass
transition (MCT). This theory attempts to provide a first-
principles description of the slow structural relaxation pro-
cesses, requiring as input the(averaged) equilibrium static
structure of the system under study. Unfortunately, for many
commonly studied glass formers, the latter is not available to
the extent required. Thus comparisons of MCT with experi-
ment usually proceed by referring to asymptotic predictions
or schematic simplifications of the theory that can be evalu-
ated without restriction to a specific system, and by fitting
the remaining parameters of the theory. One has to be careful
when interpreting these results, since it is known that most
experimental data is hardly inside the regime of applicability
of the asymptotic formulas[2,3]. Still, this way, many stud-
ies of the predicted MCT scenario have been performed(see
Ref. [1] for a review).

Having established the general scenario, important ques-
tions arising are what are its ranges of validity, and what is
the effect of the approximations made in the course of deriv-
ing the theory. These questions can be addressed by compar-
ing the “full” solutions of the theory to experimental results
for one and the same system for which the static structure is
known in detail. While work has been done along this direc-

tion to various degrees of detail recently, a coherent picture
for a single prototypical system has not yet emerged. This
paper aims towards filling this gap by providing a detailed
comparison of computer-simulation results for a system of
quasihard spheres with the corresponding “full” MCT solu-
tions, to establish the performance of MCT in describing the
dynamics of a prototypical glass-forming system as a fully
microscopic theory.

Such first-principles comparisons have become possible
with the appearance of powerful MD simulations for simple
model systems. Simulation data has been used to success-
fully test the MCT predictions for the frozen glassy structure
(the long-time limit of the dynamical correlation functions)
for a mixture of Lennard-Jones particles[4], a liquid of di-
atomic molecules[5,6], and for simulation models of water
[7,8], of a silica melt[9], and of the molecular glass former
orthoterphenyl[10]. In these cases, the equilibrium-structure
input to MCT was determined from the simulations them-
selves. The dynamical information has not been compared to
MCT in these cases. This comparison has been tackled for
the Lennard-Jones mixture[11] and for two binary hard-
sphere mixtures[12], but there the discussion had to be re-
stricted to the slowest decay process, while qualitative devia-
tions from MCT at intermediate and short times could not be
resolved. This is in contrast to a full-MCT analysis of experi-
mental light-scattering data from a quasibinary hard-sphere-
like colloidal mixture [13], where agreement over the full
accessible time window was found as far as MCT was con-
cerned, including short and intermediate times. It is unclear
to what extent the different system types and the different
forms of short-time dynamics between the MD simulations
and the colloidal system give rise to the differing results.
Thus it seems appropriate to perform this comparison for an
even more fundamental, paradigmatic glass former, viz., the
hard-sphere system(HSS).
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Simulations for this system close to the glass transition
have been performed by Doliwa and Heuer[14,15] using a
Monte Carlo procedure and a slight polydispersity. There, an
emphasis was put on the analysis of cooperative motion on
the single-particle level, and no quantitative connection to
MCT was reported. Instead we focus on the analysis of the
self-intermediate scattering functions, which can be directly
compared to theory and experiment. We chose to perform
molecular dynamics(MD) simulations instead of MC, in or-
der to be able to also study the influence of different realistic
types of short-time dynamics, i.e., “atomistic” Newtonian
dynamics(ND) and “colloidal” Brownian dynamics(BD).
Such a study has been performed earlier for the Lennard-
Jones mixture mentioned above[16], however no full-MCT
analysis was included there.

For an observation of the equilibrium glassy dynamics, it
is, in general, necessary to avoid crystallization by some
means. For the HSS, this can be accomplished by introduc-
ing a small amount of polydispersity that drastically reduces
crystallization rates[17]. This is inherently the case in stud-
ies of colloidal suspensions. In the MD simulation, we are
able to fully control the distribution of particle radii in the
system. In colloidal suspensions, solvent-mediated hydrody-
namic interactions(HI) are inevitable. It is an as yet not
settled question to what extent HI influence the dynamics at
high densities. In the present simulations, HI are not present.
Thus our study also serves to complement previous MCT
analyses of colloidal hard-sphere suspensions[18–22], dem-
onstrating that HI are not an important ingredient for a quan-
titative description of structural relaxation.

The paper is organized as follows. First, we introduce in
Sec. II the relevant quantities for the discussion. An investi-
gation of some asymptotic properties of the simulation data
is performed in Sec. III, whereas Sec. IV is devoted to a
comparison of the time-dependent data with MCT results for
the one-component HSS. In Sec. V, the effects of polydisper-
sity will be discussed within the framework of this MCT
analysis. We summarize our findings in the conclusions, Sec.
VI.

II. SIMULATION AND THEORY DETAILS

A. Molecular dynamics simulations

We perform standard molecular-dynamics simulations of
N=1000 particles in the canonical ensemble in a polydis-
perse system of quasihard spheres. The core-core repulsion
between particles at a distancer is given by

Vcsrd = kBTS r

d12
D−36

, s1d

where d12 is the center-to-center distance,d12=sd1+d2d /2,
with d1 andd2 the diameters of the particles. This potential is
tailored to be a continuous approximation to the hard-sphere
potential considered in the theoretical part of the work, as
this facilitates the simulation of Brownian dynamics. The
control parameters of this soft-sphere system are the number
density% and temperatureT; they appear however only as a
single effective coupling parameter,G=%T−12 [23]. In the

simulation,G is varied by changing the density and keeping
the temperature fixed. In the following, we denote the num-
ber density in terms of a packing(or volume) fraction, which
for a monodisperse system readsw=sp /6d%d3. To suppress
crystallization, the diameters of the particles in the simula-
tion are distributed according to a flat distribution centered
aroundd and a half-width ofdd /2=0.1d. Thus the volume
fraction readsw=sp /6dd3f1+sd /2d2g%.

Note that, due to polydispersity and finite-size effects, it is
not trivial to ensure that the volume fraction remains con-
stant among different runs, i.e., different realizations of the
polydispersity distribution. If one randomly drawsN par-
ticles with radii according to the polydispersity distribution
at a fixed number density, the resulting packing fraction will
vary from run to run, by up to about 1% in the cases we have
investigated. This is not acceptable, since the slow dynamics
to be discussed depends sensitively on the packing fraction.
In order to eliminate such fluctuations ofw, we instead
choose a fixed realization of the radius distribution(1000
equally spaced radii from 0.9 to 1.1), and randomly assign
each radius to one of the particles in the initial configuration.

Both Newtonian and Brownian dynamics simulations
were performed, to analyze the effect of the microscopic
dynamics on the structural relaxation. Newtonian dynamics
(ND) was simulated by integrating the Newton’s equations
of motion in the canonical ensemble at constant volume. In
Brownian dynamics (BD), or more precisely, strongly
damped Newtonian dynamics, each particle experiences a
Gaussian distributed white noise force with zero mean,hW std,
and a damping force proportional to the velocity,grẆ, apart
from the deterministic forces from the interactions. Hence
the equation of motion for particlej is

mrẄ j − o
i

FW i j = − grẆ j + hW jstd s2d

whereg is a damping constant. The stochastic and friction
forces fulfill the fluctuation-dissipation theorem,
khW istdhW jst8dl=6kB Tgdst− t8ddi j . The value ofg was set to

s30/Î3dkT/ sdvthd; this “overdamped limit” ensures that the
results presented here no longer show a dependence on the
valueg. Such a form of the dynamics has been introduced in
the study of glassy relaxation by Gleimet al. [16]. Let us
note that the short-time dynamics visible in the correlators
and in the mean-squared displacement still is not strictly dif-
fusive, but rather strongly damped ballistic. Since it is not
our aim to investigate the very short-time dynamical features
of the simulations, this will not be discussed in the follow-
ing.

Equilibration runs were done with ND in all cases, since
the damping not only introduces a change in the overall time
scale but also slows down the equilibration process. Lengths
are measured in units of the diameter, the unit of time is fixed
setting the thermal velocity tovth=ÎkB T/m=1/Î3, and the
temperature is fixed tokB T=1/3. In ND, theequations of
motion were integrated using the velocity-Verlet algorithm
[24], with a time stepdt=0.0025. The thermostat was ap-
plied by rescaling the particle velocity to ensure constant
temperature everynt=100 time steps. For well equilibrated
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samples, no effect ofnt was detected. The equations for
Brownian motion were integrated following a Heun algo-
rithm [25] with a time ofdt=0.0005. In this case, no external
thermostat was used, since the samples were already equili-
brated when running BD simulations.

The orientational order parameterQ6 [26,27] was used to
check that the system was not crystalline. For amorphous
liquidlike structures,Q6 is close to zero, whereas it takes a
finite value for an ordered phase. The polydispersity distri-
bution used here is still too narrow to avoid crystallization
completely, but it allows us to simulate the structural relax-
ation dynamics with sufficient statistics. Those samples have
been excluded from the analysis.

The volume fractions investigated in this work arew
=0.50, 0.53, 0.55, 0.57, 0.58, 0.585, and 0.59. At each vol-
ume fraction, we extracted as statistical information on the
slow dynamics the self part of the intermediate scattering
function for several wave vectorsqW, fssq,td=kexpf−iqW(rWsstd
−rWss0d)gl, formed with the Fourier-transformed fluctuating
density of a single “tagged” particle at positionrWsstd. Here,
angular bracketsk·l denote canoncial averaging. A related
quantity which we also extracted from the simulations is the
mean-squared displacement(MSD) of a tagged particle,
dr2std=k(rWsstd−rWss0d)2l. The correlators and the MSD were
averaged over typically 50 runs, except for the BD simula-
tions at w=0.585 and 0.59, where 20 runs have been per-
formed originally. Forw=0.59 we have also performed ad-
ditional runs for both ND and BD in order to investigate
some phenomena found there; see Sec. III B below.

B. Mode-coupling theory

In a system ofN structureless classical particles, i.e.,
without any internal degrees of freedom, the statistical infor-
mation on the structural dynamics is encoded in the density
correlation function,Fsq,td=k%sqW ,td*%sqWdl, formed with the
fluctuating number densities%sqW ,td=o j=1

N exp(iqW ·rW jstd) /ÎN
for wave vectorqW. Fsq,td is a real function that depends on
qW only throughq= uqW u, since it is the Fourier transform of a
real, translational-invariant and isotropic function(i.e., the
van Hove function). The slow dynamics of the dense liquid
given by Fsq,td is probed by the mean-squared displace-
ment,dr2std, and the self-part of the intermediate scattering
function (also called tagged-particle correlation function),
fssq,td, extracted from our simulations. Note that the latter
is linked to the MSD in the limitq→0, via fssq,td=1
−s1/6dq2dr2std+Osq4d.

The mode-coupling theory of the glass transition(MCT)
[28] builds upon an exact equation of motion for the normal-
ized density autocorrelation function,fsq,td=Fsq,td /Ssqd,

1

Vsqd2]t
2fsq,td + fsq,td +E

0

t

msq,t − t8d]t8fsq,t8ddt8 = 0.

s3ad

Here,Vsqd2=q2vth
2 /Ssqd is a characteristic squared frequency

of the short-time motion, andSsqd is the static structure fac-
tor, Ssqd=Fsq,t=0d. The equation of motion is supple-

mented by the initial conditionsfsq,t=0d=1 and ]tfsq,t
=0d=0. All many-body interaction effects are contained in
the memory kernelmsq,td, the description of which is the
aim of the MCT approximations. One splits off from this
kernel a mode-coupling contributionmMCTsq,td, while the
remainder is assumed to describe regular liquid-state dynam-
ics. Let us approximate this latter part by an instantaneous
contribution,

msq,td < fnsqd/Vsqd2gdstd + mMCTsq,td. s3bd

The damping termnsqd is chosen asn=s30/Î3dvth/d inde-
pendent ofq; a choice that ensures the short-time expansion
of fsq,td in the overdamped limit to match that one of the
simulation, cf. Eq.(2): one gets

fsq,td = 1 − fq2/SsqdgskB T/gdt + Ost2d

= 1 − fVsqd2/ngt + Ost2d.

Note that theq-independent choice ofn destroys momentum
conservation for the hard-sphere particles; this is appropriate
for a model of a colloidal system.

The MCT contribution to the memory kernel is given by
mMCTsq,td=Fqffstdg, where

Ff f̂g =
%

2q4 E d3k

s2pd3SsqdSskdSspdVsqW,kW,pWd f̂skd f̂spd s3cd

and the abbreviationpW =qW −kW has been used. The vertices
VsqW ,kW ,pWd are the coupling constants of the theory, through
which all crucial control-parameter dependence enters. They
are given entirely in terms of static two- and three-point cor-
relation functions describing the equilibrium structure of the
system’s liquid state. The latter are approximated using a
convolution approximation, so that the vertex reads

VsqW,kW,pWd = fsqWkWdcskd + sqWpWdcspdg2 . s3dd

Here,csqd is the direct correlation function(DCF) connected
to the static structure factor bySsqd=1/f1−%csqdg.

The long-time limit of the correlation functions,fsqd
=limt→`fsq,td, is used to discriminate between liquid and
glassy states. In the liquid,fsqd;0, while the glass is char-
acterized by somefsqdÞ0. From Eqs.(3), one findsfsqd as
the largest real and positive solution of the implicit equations
[29]

fsqd
1 − fsqd

= Fqffg. s4d

In particular, there exist critical points in the control-
parameter space, identified as ideal glass transition points,
where a new permissible solution of Eq.(4) appears. Typi-
cally, fsqd jumps discontinuously from zero to nonzero val-
ues there. Close to such a critical point on the liquid side, the
correlation functions exhibit a two-step relaxation scenario,
composed by a relaxation towards a plateau value, and by a
later relaxation from this plateau value to zero termeda
relaxation. On approaching the transition, the characteristic
time scale for thea relaxation diverges, and an increasingly
large window opens where the correlation functions stay
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close to their plateau. The plateau values on the liquid side
are in leading order given by the critical solutions of Eq.(4),
fcsqd, i.e., by the maximal solutions of Eq.(4) evaluated at a
critical point. The time window for whichfsq,td is close to
fcsqd is called theb-relaxation regime, and is the object of
asymptotic predictions of MCT[2,28,30]. These include
scaling laws for the correlators, whose power-law exponents
a andb, called the critical and the von Schweidler exponent,
are given by an exponent parameterl. The latter is calcu-
lated within MCT and depends on the static equilibrium
structure of the system. We will test some of the predictions
connected withb relaxation in Sec. III D.

Let us also recollect the MCT equations of motion for the
tagged-particle correlation functionfssq,td of a tagged par-
ticle that is of the same species as the host fluid, since this
will be the quantity we shall analyze below. For it, an ex-
pression similar to that of Eqs.(3) holds,

1

Vssqd2]t
2fssq,td + fssq,td +E

0

t

mssq,t − t8d]t8f
ssq,t8ddt8 = 0,

s5ad

where we haveVssqd2=q2vth
2 . The tagged-particle memory

kernel is given in MCT approximation bymssq,td
<snssqd /Vssqd2ddstd+F sffsstd ,fstdg, with

F sf f̂ s, f̂g =
1

q4E d3k

s2pd3VssqW,kWdfskdfsspd, s5bd

and with vertices

VssqW,kWd = sqWkWd2cskd2, s5cd

where we setnssqd;n in the following. The qualitative fea-
tures offssq,td close to an ideal glass transition are the same
as those offsq,td, as long as it couples strongly enough to
via Eq. (5b). In this generic case, alsofssq,td develops a
two-step relaxation pattern, with plateaus given by the criti-
cal solutionf s,csqd of the tagged-particle analog of Eq.(4),

f ssqd
1 − f ssqd

= F q
sf f̂, f̂ sg. s6d

The mean-squared displacement(MSD) dr2std can be cal-
culated from theq→0 limit of the tagged-particle correlation
function. One gets

]tdr2std + vth
2E

0

t

m0
sst − t8ddr2st8ddt8 = 6vth

2 t, s7d

where we have setm0
sstd=limq→0 q2mssq,td.

Equations(3) can be solved numerically for the functions
fsq,td, once the verticesVsq,k,pd have been calculated
from liquid-state theory. To this end, the wave vectors are
discretized on a regular grid ofM wave numbers with spac-
ing Dq: qid= iDq+q0. We have usedM =300,Dq=0.4/3, and
q0=0.2/3, implying a cutoff wave vectorq*d=39.93. This
discretization is enough to ensure that the long-time part of
the dynamics does not show significant numerical artifacts
[2], the biggest error being a few percent cutoff dependence
of an overall shift in time scales. The discretization we use is

the same as in a previous discussion of MCT results for the
HSS [31]. Once thefsq,td have been determined, a similar
numerical scheme allows to evaluate Eqs.(5) for thefssq,td,
and from this, one getsdr2std from Eq. (7).

For the solution of Eqs.(4), a straightforward iteration
scheme guarantees a numerically stable determination of the
correct solutionsfsqd=fsq,t→`d [29] and, once thefsqd
are calculated, off ssqd=fssq,t→`d. From the distinction
between states withfsqdÞ0 and fsqd;0, the critical point
wc can be found by iteration inw. For the solution of these
equations, we have used a discretization withM =100, Dq
=0.4, andq0=0.2. This is sufficient to ensure that errors in
the fsqd, fssqd, andwc resulting from the different discretiza-
tions used are small.

A few results shall also be discussed concerning the
polydispersity-induced effects. MCT for continuous polydis-
persity distributions is not available, but we try to estimate
the influence of the polydispersity by calculating MCT re-
sults for S-component mixtures with the species’ diameters
chosen to mimic the simulated polydisperse distribution. We
have used anS=3 model with diametersda[ h1−w,1 ,1
+wj, and%a=% /3, wherea labels the species of the mixture,
and%a is the partial number density of each species. Here,
we setw=1/Î200 in order to match the second moment of
the discrete distribution to that of the one used in the simu-
lation. We have also calculated results for anS=5 model,
with da[ h0.9,0.95,1.0,1.05,1.1j, and %a=% /5, chosen to
contain particles within the same size range as in the simu-
lation. The MCT equations, Eqs.(3), generalize to mixtures
in an obvious way, leading to equations of motion for the
matrix of partial density correlators,Fabsq,td [32,33]. Simi-
lar to Eqs.(5), the correlators for a tagged particle of either
one of the species,fa

ssq,td, are calculated, together with
their long-time limits,f a

ssqd. We can now define “averaged”
tagged-particle quantities as

f pd
s sqd =

1

S
o
a=1

S

f a
ssqd, s8d

and similarly forfpd
s sq,td. These quantities are analogous to

the quantities extracted from the polydisperse MD simula-
tions.

To calculate results from the MCT equations, we require
as the only input expressions for the direct correlation func-
tion csqd entering the vertices, Eqs.(3d) and (5c). For the
multicomponent analog of these expressions, one requires
knowledge of the full matrix of direct correlation functions,
cabsqd. The DCF could be either determined from simula-
tions, or taken from well-known results of liquid structure
theory. For hard spheres, the Percus-Yevick(PY) closure to
the Ornstein-Zernike equation provides a fairly accurate
parameter-free description[23]. Using the PY-DCF as input
to MCT, we thus obtain results for the dynamics of the HSS
that are independent on any empirical parameters or any
(usually not readily available) simulation input. These pre-
dictions are the best we can currently achieve from within
MCT as a completely parameter-free theory. Furthermore,
the wealth of asymptotic predictions of MCT has been
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worked out in great detail for this model[2,30]. Note that the
PY approximation to the DCF itself introduces errors that are
independent from those introduced by the MCT approxima-
tion. It has been pointed out recently that these PY-induced
errors can be quite pronounced in the MCT-calculated quan-
tities, even if they appear small at theSsqd level [12]. To
disentangle these two error sources, we have also performed
some calculations within MCT withSsqd obtained from our
simulation, as will be discussed below.

III. DATA ANALYSIS

Let us start the discussion of the data by a comparison of
the structure factorSsqd obtained from the simulation with
the PY approximation, since this is the crucial input to all
MCT calculations below. Figure 1 shows this quantity for
w=0.58. While PY reproduces the oscillation period inSsqd,
i.e., the typical length scale, correctly, it overestimates the
peak heights, i.e., the strength of ordering in the system[23].
Since the strength of the coupling constants in MCT is di-
rectly connected to the peak heights inSsqd, the MCT calcu-
lation based on the PYSsqd will overestimate the tendency to
glass formation. One can try to adjust the peak heights by
setting a lower packing fraction in the PY calculation. This is
demonstrated by the dashed line in Fig. 1, wherew=0.505
has been taken. This value has in fact been determined by the
MCT fits presented in Sec. IV, and is chosen such that the
final relaxation time in the MCT calculations at that density
matches the one of the simulations atw=0.58. As Fig. 1
demonstrates, this introduces a small error in the oscillation
period inSsqd.

It is well known that MCT, based on the PY structure
factor for hard spheres, under-estimates the glass-transition
packing fraction of that system. One getswMCT

c <0.516 [2],
instead of the value reported from experiments on colloidal
hard-sphere-like suspensions,wc<0.58 [18]. In order to de-

termine to which extent such an underestimation can stem
from deviations of PY from the simulatedSsqd, which are
visible in Fig. 1, we have calculated MCT results forwMCT

c

and the critical plateau valuesf csqd both using the PY ap-
proximation and using our simulation results forSsqd as in-
put to the theory. We have evaluated the structure factor from
the simulation atw=0.50 andw=0.58, where we could get
reasonable statistics for this quantity. The MCT calculations
then proceed by a linear interpolation between these two
cases to approximateSsqd at nearby values ofw. The critical
nonergodicity parametersf csqd thus obtained are shown in
Fig. 2. They agree well forqdù6, lending confidence to the
PY-based discussion of the correlation functions. Smallerq
have been omitted from the figure. There, numerical prob-
lems in the MCT calculation arise which are related to the
noise in the simulatedSsqd. The results for the exponent
parameterl also do not differ significantly between the two
calculations. We getl<0.735 in the PY-based case[2], and
0.727ølø0.773 based on the simulatedSsqd, the latter
value depending somewhat on the discretization used. The
values for the critical packing fraction, however, differ be-
tween the two calculations: instead ofwMCT

c <0.516, we get
wMCT

c <0.585 when using the simulated data to obtainSsqd.
Note that this makes this MCT result almost coincide with
what has been reported for colloidal realizations of a hard-
sphere system[18]. Such agreement is accidental, particu-
larly because the valuewsim

c extracted from our simulations is
even higher, but it demonstrates that the approximations used
for Ssqd need critical assessment. Let us also note that the
findings described here do not completely agree with similar
results reported in Ref.[12]. There, the same qualitative
trend for wMCT

c was found for a hard-sphere system, and as
well for two binary hard-sphere mixtures. But in this case,
the values forf csqd based on the simulated structure-factor
input differed notably from those calculated within the PY
approximation, while we find no significant difference in this
quantity. In principle, our simulation-based results forf csqd

FIG. 1. Comparison of the static structure factorSsqd for the
simulated polydisperse soft-sphere system atw=0.58 (symbols)
with the Percus-Yevick approximation to the hard-sphereSsqd at the
same density(solid line). The dashed line shows the Percus-Yevick
result for w=0.505. The region around the first diffraction peak is
enlarged in the inset.

FIG. 2. MCT results for the critical nonergodicity parameters
f csqd, using as input the static structure factorSsqd from Percus-
Yevick theory for hard spheres(dashed line). The crosses connected
by the solid line show the results usingSsqd as obtained from the
polydisperse nearly-hard-sphere simulation.
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have no reason to be closer to the PY results than the
simulation-based results from Ref.[12], since we use a
slightly polydisperse soft-sphere system, while in Ref.[12],
strictly monodisperse hard spheres have been simulated, at
the cost of having to extrapolate to the desired high densities.

The results shown in Fig. 2 suggest that we may proceed
in the following discussion by basing all MCT results on the
Percus-Yevick approximation forSsqd. While this will make
an adjustment of packing fractionswMCT necessary, it has the
advantage of giving a first-principles theory to compare the
simulation data to. In particular, the results presented above
point out that neither the shape and strength of thea relax-
ation, nor the asymptotic shape of the correlators in the
b-scaling regime will change much between the PY-based
results and those based on the simulated structure factor.

Before we embark on the comparison of the intermediate
scattering functions with the “full” MCT solutions, let us first
analyze the simulation data according to the asymptotic pre-
dictions of MCT, in order to identify the time window where
MCT should certainly be applicable.

A. Identification of structural dynamics

In Fig. 3, results of the simulations are shown for different
packing fractionsw. A wave vectorqd=7.8 close to the first
peak in the static structure factor has been chosen. Different
values ofq show qualitatively similar scenarios. The thick
solid lines in the figure are the simulation results for
“Brownian” dynamics simulations. Upon increasingw, one
observes the emergence of a two-step relaxation process at
times long compared with typical liquid time scales. A typi-
cal relaxation curve for the dilute case, is exemplified by the
dotted line in the figure, showing the BD simulation result
for w=0.01. From this, we read off a “microscopic” relax-
ation time for the short-time relaxation oft<1. The slow

two-step relaxation pattern is usually referred to as structural
relaxation and is a precursor of the approach to a glass tran-
sition at somewc. The scenario has been observed repeatedly
in similar systems. In our simulations, we are able to follow
the structural relaxation scenario for up to about five orders
of increase in the relaxation time.

MCT predicts that the structural relaxation becomes, up to
a common time scalet0, independent on the type of micro-
scopic motion that governs the relaxation at short times. To
demonstrate that this is the case, Fig. 3 shows as thin lines
the simulation results using Newtonian short-time dynamics.
The data have been scaled int in order to match the BD data
at corresponding packing fractions and at long times. Indeed,
then the relaxation curves match within our error bars at
times t.10, indicated by the diamond symbols in Fig. 3.
Only at shorter times, the regime of nonstructural relaxation
can be identified by the different shapes of the BD and ND
curves. According to MCT, the scale factort* = t0

BD/ t0
ND used

to match the BD and ND data at long times should be a
smooth function ofw, given by a constant in leading order
close to wc. For our simulation results, the values are as
shown in the inset of Fig. 3; they are compatible with a
constant shiftt* <4.25 within error bars. Only atw=0.58 and
w=0.585 do we note a stronger deviation, the reason of
which is unclear. The overall variance int*swd is comparable
to the one found in a similar study of a binary Lennard-Jones
mixture [16].

We conclude that the time windowt.10 deals with struc-
tural relaxation and thus comprises the regime where MCT
predictions can be tested. At shorter times, deviations from
those predictions must be expected. As can be seen in Fig. 3,
this bound is approximately independent ofw. According to
MCT, the structural relaxation regime commences with a
critical relaxation that is asymptotically independent ofw
[34]. Since the “microscopic dynamics” at shorter times de-
pends smoothly onw, it changes little over the relatively
narrow range observed here. Hence the result seen in Fig. 3
is in accordance with MCT. Fig. 3 indicates, in agreement
with theoretical studies[34,35] and previous ND simulations
[11], that the “microscopic” influences are larger in ND. We
thus primarily discuss the BD data, which prove to be sim-
pler to understand within an MCT description.

B. a-process analysis

The second step of the two-step relaxation process, i.e.,
the decay of the correlators from their plateau value, is re-
ferred to as thea process. A prediction of MCT is that the
shape of thisa relaxation becomes independent onw in the
limit w→wc−0. Thus, scaling the correlation functions for
givenq and differentw to agree at long times should collapse
the data onto a master curve. Figure 4 demonstrates the va-
lidity of a scaling for the BD data at several wave vectors
betweenq=4.0 and 19.8. The scaling works as expected
from the MCT discussion of the HSS[2] for wø0.58. The
closer a state is towc, the larger is the window where the
correlator follows thea-master function. The increase of the
fsq,td above the master functions at shorter times is con-
nected to theb process, discussed below. Forw=0.59, a

FIG. 3. Simulation results forw=0.50, 0.53, 0.55, 0.57, 0.58,
0.585, 0.59(from left to right) at wave vectorqd=7.8. Heavy solid
lines are the results using Brownian dynamics, thin lines the results
for Newtonian dynamics. For the latter curves, timest have been
multiplied by factorst* given in the inset. The dotted line is the BD
result forw=0.01, indicating the dilute limit of the correlation func-
tion. The solid diamonds indicate the points where Newtonian and
Brownian dynamics results start to agree at a 2% level.
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scaling breaks down at long times,tù500. The reason for
this is unclear, and cannot be understood within MCT. As
observed by the orientational order parameterQ6, the system
did not show appreciable trends to crystallization in any of
the analyzed simulation runs. Also forw=0.585, some devia-
tions froma scaling can be seen, particularly atq=7.8 and at
aroundt=1000, which are not in agreement with the preas-
ymptotic corrections to MCTa scaling. But in this case, the
deviations are less pronounced than those atw=0.59.

The behavior of the long-time dynamics at these two den-
sities, w=0.585 and 0.59, is not fully understood. We have
tried to improve the statistical averaging by increasing the
number of simulation runs. However, there appear to be two
subsets among the runs: one where thea-scaling violation is
very pronounced, and one where the correlators instead fol-
low the scaling behavior much closer. This happens in both
the ND and the BD simulations, although the effect is more
clearly seen in the ND case. Out of the 30 data sets we have
averaged in the BD case forw=0.59, only 8 show the scaling
violation; in the ND case we have averaged over 70 sets,
with 25 of them deviating from scaling. While Fig. 4 shows
the data averaged over all simulation runs, Fig. 5 demon-
strates the variation ina-time scale between the two types of
data sets, obtained by restricting the averaging to the number
of data sets specified above. While we have noa priori jus-
tification to modify the averaging procedure in any way, it
allows us to point out that possibly some “rare” events take
place in the system at these high densities, which we cannot
classify as crystallization events on the basis ofQ6, but
which modify the dynamical long-time behavior in a distinct
way. For the ND data, thea-time scale varies by a factor of
2.5 between the two cases. In the BD data, the effect is less
pronounced, but still gives a factor of about 1.6. As the dot-
ted lines in Fig. 5 demonstrate, the majority of the data sets
follows the predicted scaling rather closely, whereas the re-
maining ones show significantly slower decay.

We have tried to analyze this finding further by looking at
the distribution of squared displacements exhibited by all the
particles,PMSD,t*

sdr2d, and its correlation with particle size.
Here, t* is a fixed time, and the distribution is defined such
that ePMSD,t*

sdr2ddr2=dr2st*d. We have fixedt* such that
dr2st*d=1.25d2. The distribution PMSD develops a non-
Gaussian peak centered around its average value, whose
width increases upon increasing the packing fraction. In
some cases, we did observe a two-peaked distribution atw
=0.59, signifying that a certain amount of particles is dis-
placed significantly less than average, i.e., that populations
of “fast” and “slow” particles develop. This might be con-
nected to the “rare events” mentioned above, but we point
out that this finding is unstable against improving the aver-
age over an increased number of simulation runs.

From thea-scaling plot, Fig. 4, we infer the regime of
a-relaxation dynamics. Note that forw=0.58, deviations
from thea-master curve due tob relaxation are seen almost
up to t<100. Those will be analyzed later. Also shown in
Fig. 4 are the MCTa-master functions. If evaluated at the
sameq as the simulation data, the description of the long-
time dynamics is unsatisfactory, because the calculated
stretching of the relaxation is too small. If we account for
this error by shiftingqMCT used in the calculations to higher
values, we get good agreement, cf. the solid lines in Fig. 4.
Note that the deviations from thea-master curve set in at a
time later than that where the ND and BD simulation results
begin to overlap: e.g., theq=7.8 curve follows thea-master
curve only for timest*100, as can be inferred from Fig. 4.
Still, the BD and ND curves for that state collapse within our
error bars already fort*20, cf. Fig. 3. This underlines that
the regime of structural relaxation identified in Fig. 3 is
larger than that of thea-decay regime observed in Fig. 4,
i.e., that both simulation data sets show some extent of the
MCT b-relaxation window.

FIG. 4. Comparison of the BD data forw=0.58 (plus symbols)
at wave vectorsqd=4.0, 7.8, 13.8, and 19.8(from top to bottom).
The long-time part of the data forw=0.55 (I symbols), 0.57
(crosses), 0.585 (circles), and 0.59(star symbols) is also shown,
scaled int to match the long-time part of thew=0.58 data. Solid
lines are the MCT master curves for shiftedqMCT (see text for
details).

FIG. 5. Demonstration of the variability between different simu-
lation runs for the ND and BD simulations atw=0.59. Data is
shown forqd=7.8, with open(filled) symbols denoting BD(ND)
results. Triangles indicate averages over a small subset of the data
(8 out of 30 sets for BD; 25 out of 70 for ND) only; inverted
triangles are the averages over the remaining data sets. The solid
lines without symbols are the total averages. Dotted lines indicate
the time-scaled MCTa-master functions.
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The values ofqMCT used in the fits of Fig. 4 areqMCT
=5.0 (9.13,10.3,15.13,18.3,20.87) for q=4.0
(7.8,9.0,13.8,17.0,19.8). These fit values are suggested by the
analysis of the full curves pursued below, cf. Sec. IV. Com-
paring the fitted wave-vector valuesqMCTto those of the
simulations, deviations inq are in the range 10% to 17%,
except forq=4.0, where a 25% deviation is needed to de-
scribe thea-master function. The way we have adjusted
qMCT ensures that the stretching of the correlators is de-
scribed correctly. In contrast, a fit of the plateau values with
thea-master functions is difficult, since the latter are still not
clearly visible in the simulation data even atw=0.59. This
will become more apparent in Sec. IV.

In all cases, the fitted wave-vector values are larger than
the actual values,qMCTùq. Since thef s,csqd giving the pla-
teau values decrease monotonically from unity atq=0 to
zero atq→`, this fit result is equivalent to stating that the
MCT-calculated plateau values appear too high. Further-
more, the half-width of thef s,csqd distribution is an estimate
for the inverse localization length of a tagged particle. Hence
the fit suggests that MCT underestimates the localization
length of a tagged particle in the system slightly. There are
two obvious reasons for such a mismatch in length scales:
first, the softness of the particles in the simulation might,
especially at high densities, give rise to some amount of
particle overlap not possible in the HSS, rendering the effec-
tive localization of the particles slightly larger. According to
Heyes[36], the soft-sphere system used in our simulations
can be well described within the hard-sphere limit and an
effective hard-sphere diameterdeff=e0

`(1−expf−bVcsrdg)dr
<ds1+ge/36d<1.016 (where ge<0.577 is Euler’s con-
stant), which differs fromd=1 by less than 2%. But one has
to keep in mind that the convergence of increasingly steep
soft-sphere potentials towards the hard-sphere limit can be
quite slow for the transport properties of the system[37].
Second, a difference in packing fractions between the simu-
lation and the MCT calculation might become important in
this respect. This arises because, within the PY approxima-
tion for the DCF, the MCT master curve is evaluated at the
corresponding value for the critical packing fraction,wc

<0.516,wsim
c . As was pointed out in connection with Fig. 1,

such a mismatch inw will affect the average particle dis-
tances, and thus an overall length scale. But sincewMCT

c

,wc one would expect this to lead to an overestimation of
the critical localization length, contrary to what we observe.

Traditionally, stretched-exponential(Kohlrausch) laws,

fssq,td < Asqdexpf− (t/tsqd)bsqdg, s9d

are known to give a good empirical description of thea
relaxation. Here,Asqd is an amplitude factor,tsqd the Kohl-
rausch time scale of thea relaxation, andbsqd,1 is called
the stretching exponent. These parameters in general depend
on the observable under study, and in particular on the wave
vectorq. Figure 6 demonstrates that the Kohlrausch laws can
also be used to fit thea-relaxation part of our simulation
data. The figure shows as an example the statew=0.58 for
various wave vectors. One problem of the stretched-
exponential analysis of the data is that the three parameters

of the fit have a systematic dependence on the fit range. In
particular, one has to restrict the fitting to such larget that
only a relaxation is fitted. For the fits shown, this range was
chosen to betù55. The data deviate from the fitted Kohl-
rausch functions significantly only at shorter times; but there
is a trend that these deviations set in just about the boundary
of the fit range. This still holds if the fit is restricted to larger
t only, and judging from the fit quality for the remaining
relaxation alone, one cannot determine the optimal choice of
the fit range. It is thus particularly difficult to extract the
regime ofa relaxation from the Kohlrausch fits alone. On the
other hand, from the MCT fits shown in Fig. 4 we expect
corrections due tob relaxation to set in at aboutt<100. This
in principle gives an indication of the maximum fit range to
choose. Yet, Kohlrausch fits restricted totù100 did lead to
an unsatisfactory scatter in the fit parametersAsqd andbsqd.
Thus an analysis of thea relaxation using Kohlrausch fits
will erroneously include parts of theb relaxation.

This trend can be also identified comparing the obtained
Kohlrausch amplitudesAsqd with the plateau valuesf s,csqd.
This comparison is shown in Fig. 7, where the MCT results
for f s,csqd are included. They have again been determined
using the PY approximation toSsqd, but in agreement with
Fig. 2, the values forf s,csqd determined from MCT calcula-
tions based on the simulatedSsqd are indistinguishable from
the ones shown on the scale of Fig. 7. For Kohlrausch fits to
the a-master function, and more generally to the
a-relaxation regime of the correlators only,Asqdø f s,csqd
should hold. Recalling the wave-number adjustment used in
Fig. 4, we should even haveAsqdø f s,cfqMCTsqdg. This latter
curve is included in Fig. 7 as the dash-dotted line, where the
mappingq°qMCT was extended from the set ofq analyzed
in this text to allq via a quadratic interpolation. The relation
Asqdø f s,csqd is clearly violated for the fits here, especially
at highq. It shows that the distinction between thea andb
regimes from the simulation data is difficult; increasingly so
with increasing wave number.

It is reassuring that the Kohlrausch fits to BD and ND
data yield values quite close to each other, apart from an

FIG. 6. Example for Kohlrausch fits to the simulation data at
w=0.58 (symbols: Brownian dynamics; dots: Newtonian dynam-
ics), qd=4.0, 7.8, 9.0, 13.8, 17.0, and 19.8. The fit range wast
ù55.
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overall shift intsqd. This holds, as long as the fit ranges are
chosen such as to fit approximately the same part of the
relaxation. In Fig. 6, the ND curves have been added, again
shifted by a scaling factor int given in the inset of Fig. 3.
Note that, while in the ND curves one can identify a plateau
from the data better than from the BD ones, still the
Kohlrausch-Williams-Watts(KWW) fits have a trend to give
too high values ofAsqd. Thus one has to be careful when
extracting plateau values from the simulation data by such an
analysis, even if the data seem to give a clear indication of
the plateau.

The stretching exponentsbsqd from the KWW fits are
shown in Fig. 8. Again, we have included error bars indicat-
ing the deviations arising from fits to differentw or to ND as
opposed to BD simulation data.bsqd increases with decreas-
ing q, and this increase is compatible withbsqd→1 for q
→0, as expected from theory[38]. According to MCT,bsqd
should approach the von Schweidler exponentb as q→`
[39]. The value ofb is calculated from the MCT exponent
parameterl, and for the HSS using the PY-DCF isb
<0.583, shown as a dashed line in Fig. 8. We observe that
the fittedbsqd fall below this value for largeq, even if the
fits are less reliable there, due to the low amplitudesAsqd at
high q. To estimate the error of the theory prediction forb,
we have also calculated this exponent from MCT using the
simulated data as input forSsqd. According to the values ofl
reported in connection with Fig. 2, we getb<0.56±0.04.
The lower bound forb thus obtained is indicated in Fig. 8 as
the dash-dotted line. Taking into account this uncertainty, the
behavior of the fittedbsqd agrees well with what is expected
from theory. In the further discussion, we will fixl to its
value derived from the PY approximation,l=0.735. Since
the shape of the correlation functions in theb regime is in
the asymptotic limit fixed byl, some deviations in the fits
described below are to be expected in this time window.

C. Analysis of a-relaxation times

Theq-dependence of thea-relaxation times at fixedw can
best be analyzed from thetsqd extracted from Kohlrausch
fits. In Fig. 9, we report values fortsqd for such fits to the
BD data atw=0.58 as the diamond symbols. If one instead
fits the ND data, or data atw=0.585 or 0.57, the
q-dependence is the same up to a prefactor and up to small
deviations. These deviations are indicated by the size of the
error bars in Fig. 9. The data closely follow a 1/q2 depen-
dence for smallq, indicated by the dotted line. This is in
agreement with earlier MCT predictions for the hard-sphere
system[38]. For q→`, one expects from MCTtsqd,q−1/b.
But sinceb is close to 1/2, we cannot distinguish this behav-
ior reliably from a 1/q2 law due to the noise of the data at
largeq.

Fits to the BD data atw=0.59 reveal significant deviations
from the behavior atwø0.585 at smallq. This can be de-

FIG. 7. Critical nonergodicity parameterf s,csqd calculated from
MCT for the one-component hard-sphere system with PY approxi-
mation (solid line), and for a five-component polydisperse system
(dashed line). Symbols are the amplitudesAsqd from Kohlrausch
fits to the data, where error bars estimate deviations depending onw
and BD/ND. The dash-dotted line indicatesf s,csqd, but transformed
with the wave-number shift applied in the discussion of the dynami-
cal data(see text for details).

FIG. 8. Stretching exponentsbsqd from fits to the BD simula-
tion data atw=0.58 using Kohlrausch laws, Eq.(9). Error bars
indicate deviations estimated from fits to ND data and tow=0.57.
The dashed horizontal line indicates theb value calculated from
MCT using the Percus-Yevick approximation forSsqd, b<0.583,
and the dash-dotted line isb as determined from MCT with
simulation-data input forSsqd, b<0.521.

FIG. 9. tsqd from Kohlrausch fits, Eq.(9), to the BD data at
w=0.58 (diamonds) and atw=0.59 (squares; scaled by a factor of
0.021). Error bars estimate the uncertainty from the fits; see text for
details. The dotted line shows a 1/q2 law.
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duced from the square symbols in Fig. 9. They have been
scaled by a constant factor in order to match the value ob-
tained from thew=0.58 fit atq=7.8, since there the MCT
analysis works best, as will be shown below. At smallerq,
the increase oftsqd with decreasingq is suppressed for the
w=0.59 data in comparison to the variation intsqd observed
for smallerw; we will come back to this decoupling of time
scales when discussing the low-q data in Sec. IV.

For a discussion of the density dependence of the
a-relaxation time, thetsqd from the stretched-exponential
fits are less reliable, since the Kohlrausch fits suffer from
larger uncertainties at lowerw, where thea and b regimes
are even less well separated. But we can operationally define
a time scaleta for the decay of the correlation functions as
the point where the correlators have decayed to 10% of their
initial value, fssq,tad=0.1. For small enoughq where
f s,csqd is still much larger than 0.1,ta is a useful measure for
the a-process time scale. In the asymptotic regime, wherea
scaling holds, it follows thea-scaling time defined within
MCT up to a constant. Thus MCT predicts a power-law di-
vergence ofta close towc of the form uw−wcu−g for not too
largeq, qø15, say. To test this prediction, we plot in Fig. 10
the quantityta

−1/g, which should yield a straight line crossing
zero atwc. Since the region of validity of this asymptotic
result is not knowna priori, a determination of the correct
value of the exponentg on the basis of such rectification plot
suffers from large errors. Therefore, let us fixg<2.46, the
value calculated by MCT using the PY approximation. Due
to the uncertainty in determiningl mentioned above, slightly
different values ofg cannot be ruled out. One getsg<2.66
as an upper bound when using the upper bound forl given
above for the MCT result based on the simulatedSsqd. This
value ofg is also quite close to what one gets[38] using the
Verlet-Weis-corrected PY structure factor[40]. Figure 10
shows rectification plots for both Brownian and Newtonian
dynamics simulation data for 4.0øqø13.8. For the latter,
the values ofta have been multiplied by 4.5, consistent with

the shift in the overall time scale, cf. inset of Fig. 3. Fits to
straight lines givewc values that are consistent with each
other forqù7.8 and both microscopic dynamics, if one re-
stricts the fit range to high enoughw and omits the highest
densities, where alpha scaling breaks down, 0.54,w,0.58
in our case. From this, one getswc<0.594±0.001, where the
error is understood for fixed fit range. The data forq=4.0
give a somewhat higher value,wc<0.598±0.001, again the
same for Newtonian and Brownian dynamics. This differ-
ence is outside the error bars of the analysis and thus not in
accord with MCT. Since the discrepancy is the same for both
types of short-time dynamics, we conclude that indeed the
structural relaxation deviates from the MCT prediction sys-
tematically at smallq.

The range of distances« to the critical point, in which we
can fit the time scales consistently with a power law, is
roughly uw−wcu /wcø0.07. This agrees with what is expected
from a discussion of the asymptotic MCT results for the
hard-sphere system[2]: For the time scales extracted from
the numerical MCT results, we have to restrict the linear fit
to wMCTù0.48, where the critical point iswMCT

c <0.516. Be-
low wMCT=0.48, one finds deviations from the straight lines
in the rectification plot; typically the results fall below the
asymptotic straight line in such a plot. If one tries to fit a
larger range inwMCT, the thus estimatedwc will be higher
than the correct one. For example, we getwc

<0.519±0.0015 when fitting in the rangewMCTù0.4. It is
reassuring that the deviations from the linear behavior seen
in Fig. 10 for the simulation results occur in the same direc-
tion as found for the MCT results.

At largeq and at the highest packing fractions studied, the
ta from the simulations are systematically smaller than what
is expected from the power-law extrapolation. This suggests
that the local relaxation dynamics of the system very close to
the transition would be faster than expected within the
theory. However, the full theory analysis presented below
suggests the opposite, indicating that at these highq, the
operational definition ofta we have chosen for simplicity no
longer works.

D. b-process analysis

We now test some of the predictions MCT makes for the
b-relaxation regime, where the correlators remain close to
their plateau values. The time window where the asymptotic
solution holds, extends int upon control parameters ap-
proaching the transition point, i.e.,w→wc. The leading de-
viation from the plateau value is of orderÎusu, wheres is
called the distance parameter, and

s = C · «, « = sw − wcd/wc, s10d

in leading order is the linearized distance in control-
parameter space. The leading-order asymptotic result is
called factorization theorem, and it can be written for the
tagged-particle correlator as

fssq,td = f s,csqd + hssqdGstd. s11d

Here, Gstd is a universal function depending only on the
parametersl, s, and a fixed “microscopic” time scalet0. The

FIG. 10. Plots ofta
−1/g for wave vectorsqd=4.0 (diamonds), 7.8

(squares), 9.0 (up triangles), and 13.8(down triangles); using g
=2.46.(a) Results for the simulation data using Brownian dynamics
(open symbols) and Newtonian dynamics(filled symbols). The val-
ues of t for the latter have been multiplied by 4.5 for this plot.
Dashed lines are linear fits to the Brownian dynamics data in the
range 0.54øwø0.58.
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expansion is valid on a time scalets= t0usu−1/s2ad that diverges
upon approaching the transition point. On this time scale, all
wave-vector dependence is factorized off from the time de-
pendence, and contained in the critical amplitudeshssqd and
the plateau valuesf s,csqd. All parameters can be calculated
within MCT, but as we have seen above, extracting them
from the simulation data is not straightforward. Fortunately,
it is possible to test the factorization property without fitting
any of the q-dependent quantities to the data. Following
Signoriniet al. [41] one can extract the critical amplitude by
plotting fssq,td−fssq,t8d for fixed t8 and varioust inside the
b regime; following Kobet al. [42], we consider the function

Xsq,td =
fssq,td − fssq,t8d
fssq,t8d − fssq,t9d

. s12d

If fixed times t8 and t9 are chosen inside theb regime, the
factorization theorem givesXsq,td;Xstd=x1Gstd−x2 for t
inside theb regime, with constantsx1 andx2 not depending
on q. Therefore, if the factorization theorem holds, plotting
Xsq,td for variousq collapses the curves in theb window,
without the need for fitting wave-vector dependent ampli-
tudes and plateau values.

We have performed this test for our simulation data for
both BD and ND. Figure 11(a) shows the results for the BD
simulation atw=0.58, with t8=8.234 andt9=20.8075. One
observes that the data nicely collapse for 5ø tø40. Addi-
tionally, the figure shows theXstd constructed from the MCT
b correlator as a dashed line. Here, two constantsx1 andx2,
and the time scalets have been fitted. The value ofl has
been taken from the theory as explained above,l=0.735.
The same analysis is carried out for the ND data in Fig.
11(b). Here, we have fixedtND8 =2.31< t8 /3.5 and tND9
=5.845< t9 /3.5, since atw=0.58 the shift in time scales be-
tween BD and ND is a factor of about 3.5; cf. inset of Fig. 3.
Again the data collapse in an intermediate window 2ø t
ø15. The upper end of this window is consistent with the
one found for the BD analysis, i.e., 15<40/3.5. The lower
end of the window whereb scaling holds for the ND data is
higher than what would correspond to the BDb window.
Thus preasymptotic corrections are stronger in the ND case.
The fit using the MCTb correlator is not as good as it is for
the BD case. Since the distance to the critical point does not
change between BD and ND, we have used thets / t0 deter-
mined from the above fit to the BD data also here. Further-
more, since we have chosentND8 and tND9 in accordance with
the values oft8 and t9 for the BD analysis, the constantsx1
andx2 should be the same; this is roughly fulfilled by our fit.

The fits to both data sets have been performed such as to
obey the “ordering rule” for the corrections tob scaling[2]:
a curve that falls below another one for times smaller than
the b window will also do so for time larger than theb
regime, since the corrections both at small and at large times
are determined by the sameq-dependent correction ampli-
tudes. Thus the ordering of wave vectors on both sides of the
scaling regime is preserved. We are able to perform a fit to
the BD simulation data that fulfills this prediction of MCT,
as can be seen in Fig. 11(a). For the ND data, we cannot
fulfill this ordering at both short and long times with reason-

able fit parameters. At shorter times, one finds that, e.g., the
q=7.8 andq=9.0 curves rise above theb-correlator curve, in
violation of the ordering rule. We thus conclude that at this
point, microscopic rather than preasymptotic deviations set
in for the ND simulations. These microscopic influences are
stronger than the ones in the BD data, as already pointed out
above. The pointq0 where the corrections tob scaling
change sign can be inferred from Fig. 11 to beq0<9/d. It is
independent on the type of short-time dynamics, in excellent
agreement with the predicted universality of structural relax-
ation, and in particular the correction-to-scaling amplitudes.
The numerical value ofq0 also agrees well with that found in
an analysis of the MCT results for the tagged-particle cor-
relator in a hard-sphere system[30], where the change occurs
at q0,MCT<9.3/d.

The b correlator for short times approaches the critical
power law, Gstd, t−a. Comparing this asymptote with the
fitted b correlator in Fig. 11, one finds that thet−a law al-
ready deviates from theb correlator att<1 for the BD data,
and att<0.3 for the ND data. Thus the critical decay cannot

FIG. 11. (a) b analysis of the BD simulation data atw=0.58: the
curves marked by symbols show Xsq,td=ffssq,td
−fssq,t8dg / ffssq,t8d−fssq,t9dg with t8=8.234 and t9=20.8075.
Wave vectors areqd=4.0 (diamonds), qd=7.8 (squares), qd=9.0
(up triangles), qd=13.8 (down triangles), and qd=17.0 (circles).
The dashed line is the equivalent of the MCTb correlator; see text
for details. The dash-dotted line indicates the plateau value esti-
mated from the root of theb correlator.(b) Same for the ND simu-
lation data,t8=2.31 andt9=5.845.
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be identified from the simulation data. This is typical for
most experimental data[1]. One thus has to be careful when
extracting the exponenta from an analysis of theb relax-
ation.

Let us from now on restrict the discussion to the BD data
set. For the ND data, deviations from the MCT predictions
occur in the early part of theb regime, and thus the theory
can explain a larger part of the BD curves than it can do for
the ND ones. For the analysis of the long-time universality of
the dynamics outlined above, we conclude that these devia-
tions are not a feature of the glassy dynamics. It is known
that MCT treats the short-time dynamics insufficiently[11],
and that Brownian dynamics typically stays closer to the
MCT scenario for a larger time window than the correspond-
ing Newtonian dynamics[34,35].

IV. FULL MCT ANALYSIS

We now turn to a full data analysis, i.e., a comparison of
the complete simulation data with the solutions of the full
MCT equations for a hard-sphere system.

In the MCT picture, the glassy dynamics of the hard-
sphere system is mainly driven by density fluctuations over
the length scale of the mean nearest-neighbour distance, i.e.,
with wave numbers close to that of the first sharp diffraction
peak inSsqd. We therefore begin the analysis by focusing on
the data forq=7.8. The results of our full-MCT fits to the
BD simulation data are shown in Fig. 12. To achieve this and
the following fits, we have adjustedwMCT for each curve and
allowed the wave numberqMCT to vary slightly with respect
to the correct valueq. No other parameters have been ad-
justed. As noted above, theq-shift to some extent accounts
for a mismatch in length scales between the simulation and
the theory predictions. The adjustment ofwMCT on the other
hand accounts for the known error inwc. We will discuss the
relation of the fittedwMCT to the correct packing fractionw
below.

The fit shown in Fig. 12 demonstrates that the theory can,
with these modifications allowed, account for the dynamics
of the hard-sphere system in a time window of over four
decades on a 10%(or better) error level. Only at larger times,
t<104 in our units, i.e., at the highest packing fraction stud-
ied, systematic deviations are observed. The simulation for
this packing fraction shows slower dynamics than expected
from the theory. Also the shape of the final decay is different,
as noted above in connection witha scaling. On the short-
time side, the MCT description works down to a timet<1.
At shorter times, it is still almost quantitative, but one ob-
serves a different curve shape. The simulation data appears
more strongly damped than the MCT curves. This is to be
expected, since neglecting the regular part of the memory
kernel in Eq.(3b) will lead to such deviations at short times.
We could have accounted for this partly by choosing a higher
value ofn in Eq. (3b), but we have not done so since we are
not concerned with the short-time dynamics in this work.

Once the fit forq=7.8 was completed to fix the empirical
relation wMCTswd, we have analyzed data for other wave
numbers up toq=30, hereby fixing the relationqMCTsqd.
Typical results forqø17 are exhibited in Figs. 13–15. Note
that the only parameter that was adjusted for these fits is the
wave number,qMCT. This way, Figs. 13–15 demonstrate how
MCT is able to reproduce the wave-vector dependent
changes in the structural-relaxation window. At even higher
q, it becomes too difficult to judge the fit quality, since the
fsqd are close to zero there. Connected with this is the grow-
ing influence of the microscopic regime,tø1, on the main
part of the decay of the correlators with increasingq. For q
=17 and the highest packing fractions, already about 60% of
the decay offssq,td from unity to zero are made up of such
microscopic dynamics. Consequently, the errors made in its
description are to be seen more explicitly in Fig. 15 than in
Fig. 12.

Apart from this, also the fits atq.7.8 using the full-MCT
results are quite satisfactory in the time window 1ø tø104,
save the highest simulated density, for which errors are larg-
est and extend down tot<10 for q=13.8 and 17; cf. Figs. 14
and 15. One notices a trend that thea-relaxation dynamics

FIG. 12. MCT(solid lines) and simulation results(symbols) for
fssq,td. For the simulation data, packing fractions arew=0.50,
0.53, 0.55, 0.57, 0.58, 0.585, and 0.59(from left to right), andqd
=7.8. For the MCT results, packing fractions have been adjusted to
wMCT=0.445, 0.47, 0.484, 0.499, 0.505, 0.508, and 0.5135, and the
wave number has been adjusted toqMCTd=9.13; see text for details.

FIG. 13. MCT and simulation data forfssq,td with symbols and
packing fractions as in Fig. 12, but forqd=9.0, adjusted in the MCT
calculations toqMCTd=10.3.
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becomes slower in the simulation data than expected from
the MCT fits, i.e., the local dynamics is slower than one
estimates in the theory. The finding can probably not fully be
attributed to the incorrect structure-factor input used, since a
recent study of binary hard-sphere mixtures reported a simi-
lar discrepancy for theq-dependence of thea-relaxation
times even when basing MCT on the “correct” simulated
Ssqd as input[12]. The same trend is also apparent in the
full-MCT analysis of a binary Lennard-Jones mixture[11].

Having established the overall quality of the MCT de-
scription for the structural dynamics on length scales smaller
and comparable to the typical particle-particle distance, let us
now investigate the adjustment inwMCT needed to achieve
this level of agreement. A plot ofwMCT vs w is shown in Fig.
16 (diamond symbols). The figure reveals that the relation is
close to linear, and thus the nontrivial variation of the relax-
ation curves close to the singularitywc has not been put in
“by hand” through the fitting parameterwMCT. We can esti-
mate the correct value of the glass-transition packing fraction
by a linear fit to thewMCT-versus-w curve. Using the calcu-
lated valuewMCT

c <0.516, we getwc<0.594. This value is
nicely consistent with the one obtained from thea-scale

analysis of the data, cf. Fig. 10, and also from an earlier
analysis of the simulations[43]. Note that it differs from the
result obtained from MCT based on the simulatedSsqd, wc

<0.585 by less than 2%. The slope of the linear fit in Fig. 16
is not equal to unity, and its zero is shifted. If one considers
the connection of the distance parameters of MCT to the
control-parameter distance«, this translates into an error of
the leading-order constant of proportionalityC in Eq. (10).
From Fig. 16 we conclude that the value calculated from
MCT, CMCT<1.54 [2], is in error by about 20%,C<1.2.

For smallq, the MCT description of the data shows larger
quantitative errors, while it remains qualitatively correct.
This is exhibited by the fits done forq=4.0, Fig. 17. Again,
only qMCT was allowed to vary, while thewMCT have been
determined from theq=7.8 fit shown in Fig. 12. While for
this latter fit, the MCT fits reproduce thea-relaxation times
rather well, this is not the case for theq=4.0 fit atwù0.57.
Instead, one observes a systematic trend for the simulation
data to decay increasingly faster than the MCT curves with

FIG. 14. MCT and simulation data forfssq,td with symbols and
packing fractions as in Fig. 12, but forqd=13.8sqMCTd=15.1d.

FIG. 15. MCT and simulation data forfssq,td with symbols and
packing fractions as in Fig. 12, but forqd=17.0sqMCTd=18.3d.

FIG. 16. Plot ofwMCT vs w for the fits shown in Figs. 12–15, 17,
and 18(diamonds). The dashed line is a linear fit,wMCT<0.81w
+0.037. The circles are for the independent fit of the MSD, Fig. 19.
The dotted horizontal line indicates the calculated critical point,
wc<0.516.

FIG. 17. MCT and simulation data forfssq,td with symbols and
packing fractions as in Fig. 12, but forqd=4.0 sqMCTd=5.0d.
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increasingw. In addition, the deviations observed in the
b-relaxation window, while still within a 10% level, are
larger forq=4.0 than they are forqù7.8. Even more, it was
necessary to allow for a 25% deviation betweenqMCT andq,
whereas this deviation was less than 17% for all other fits.
This last finding suggests that thef s,csqd-versus-q curve cal-
culated within MCT is too broad. It is common to express
deviations of thef s,csq,td-versus-q curve at fixedt from a
Gaussian at smallq in terms of the non-Gaussian parameter,
a2std. These non-Gaussian corrections are reproduced quali-
tatively correct by MCT, but with an error in magnitude. One
finds a2stdø0.3 in the theory[30], while for our simulation,
a2std reaches values up to 2.5 in both BD and ND, which is
in agreement with similar simulation results for other sys-
tems[44]. But note that for times wherefssq,td is close to
its plateau valuef s,csqd, both the MCT and the simulation
value ofa2std are positive. Thus the underestimation ofa2 in
the theory would let thef s,csqd-versus-q curve appear too
narrow, opposite to what is observed from our fits. We thus
conclude that non-Gaussian corrections as expressed through
a2std and the quantitative error MCT makes in expressing
them cannot be alluded to to explain the deviations observed
at q=4.0. Let us point out that the deviations discussed
above do not depend significantly on the fact that we have
based the MCT calculation on the PY-DCF. Using the simu-
lated structure factor with MCT gives correlation functions
fssq,td that behave qualitatively as the ones shown here.

It is instructive to extend this analysis towards the mean-
squared displacement data. Since the MSD is given through
a memory kernel that basically is aq→0 limit of the tagged-
particle-correlator memory kernel, Eq.(7), its analysis can be
viewed as theq→0 extension of the above fitting procedure.

We report the BD simulation data for the MSD, together
with the MCT curves according to the correlation functions
shown above, in Fig. 18. For the MSD, no wave number is to
be adjusted, and in this sense, the MCT results of Fig. 18 are
not fitting results, but rather consequences of the analysis
done forq=7.8, shown in Fig. 12. We have, however, ad-

justed a global length scale in this plot, in order to better fit
the localization plateau visible in the data. The MCT curves
have been scaled up by a factor of 1.1, which accounts for a
5% underestimation of the localization length by the theory.
Note that at short times,t,1, the description of the data
using MCT is of similar quality as discussed above. In par-
ticular, the MSD plot reveals that the BD simulation still
resembles a Newtonian short-time dynamics, though strongly
damped: the MSD roughly follows adr2, t2 law for 10−2

, t,10−1, and not adr2, t law as would be expected for
short-time diffusion in a strictly Brownian system. Theory
and simulation do not match at short times because of the
scale factor applied. For long times, a qualitatively similar
picture emerges as forq=4.0, regarding the variation of the
a-relaxation times withw, now showing through a displace-
ment of the long-time diffusive straight lines in thedr2std
plot. As for q=4.0, the quality of the MCT description of the
b-relaxation regime similarly is worse than forqù7.8. But
for the MSD, all deviations are larger than forq=4.0, espe-
cially in the a-relaxation regime.

Before investigating thea-relaxation regime in more de-
tail, let us note that, all deviations taken aside, the shapes of
the MSD curves as predicted by MCT are qualitatively cor-
rect. To substantiate this statement, Fig. 19 shows an inde-
pendent fit of the MSD using MCT. Instead of fixing the
wMCT-versus-w relation from the data atq=7.8, as was done
above, in this case this relation was determined from the
MSD alone. It is noteworthy that by correcting the error in
thea-relaxation time scale observed before, also the descrip-
tion of theb-relaxation window improves. In particular, we
did not scale the MCT results as we have done in Fig. 18.
The valueswMCTswd used in Fig. 19 are reported in Fig. 16 as
the circle symbols. They also lie on a straight line, which is
shifted downward somewhat with respect to the original re-
lation deduced from the above fits. In turn, an estimation of
wc from the mean-squared displacement, i.e., from the diffu-
sivities, yields a value that is too high, viz.,wc

FIG. 18. Comparison of the mean-squared displacementsdr2std
from simulation and MCT calculations; all fit parameters have been
taken from Fig. 12. In addition, the MCT curves have been multi-
plied by 1.1 to account for an error in localization length; see text
for details.

FIG. 19. Comparison of the mean-squared displacementsdr2std
from simulation and MCT calculations. In this plot, valueswMCT

used for the MCT calculations have been adjusted to fit the long-
time diffusion regime of the simulateddr2std; the values arewMCT

=0.438, 0.46, 0.478, 0.494, 0.502, 0.503, and 0.511 forw=0.50,
0.53, 0.55, 0.57, 0.58, 0.585, and 0.59, respectively.
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<0.598±0.003. This is a typical result also found in other
simulations[12], but not in accord with MCT. But note that
the estimations forwc are quite close to each other, so the
deviations can be regarded as indications of error margins.
As a side remark, let us note that the parameters from the
independent fit to the MSD presented in Fig. 19 could be
used to improve the description of theq=4.0 case somewhat,
but not completely. One concludes that the MCT description
of the single-particle structural relaxation smoothly deterio-
rates for decreasingq.

The deviations in thea-relaxation regime, i.e., the long-
time diffusive regime, that arise for the MSD can be ana-
lyzed more clearly by looking at the long-time self-diffusion
coefficient Dswd itself. Here,D has been determined from
the simulations by the Einstein relation,dr2,6Dt for larget,
at timest wheredr2 is of the order of 10 squared particle
radii. The results for the BD simulations are shown in Fig. 20
as the diamond symbols. In contrast, the MCT calculation,
plotted in the figure as a solid line, shifted according to the
relation wMCTswd used in the above discussion, systemati-
cally falls below these values. The relative error inD is less
than 20% up tow<0.55, increases to 80% atw=0.58, and
reaches a factor of 4 atw=0.59. The two curves could be
matched within the error bars by further shifting the MCT
results along thew axis by less than 1%, which is basically
what has been done in Fig. 19. But let us stress that there is
no theoretical justification for doing so.

MCT predicts a power-law asymptote forD with the same
exponentg that applies for the divergence of thea-relaxation
times,D~ usug. This asymptote is included in Fig. 20 for the
MCT results as a dashed line. It is also possible to fit the
simulation data with such a power law. We have restricted
these fits towù0.55 and have omitted the value atw
=0.585. If we fix the exponent to the theoretical value,g
<2.46, we get reasonable agreement with a fittedwc

<0.599, in agreement with the above observation. If we, on
the other hand, also determineg from the fit to Dswd, the
result iswc<0.597 withg<2.24. A typical observation from

simulation and experiment is that an independent determina-
tion of g from the diffusion coefficient yields a different
value than that obtained from the analysis of the density
correlators[45]. From the comparison of the MCT results
with the asymptotic prediction in Fig. 20, it is, however,
clear that the asymptotic law only holds forD,10−3, i.e., for
wù0.58 for our simulations. Thus a large part of the fitted
simulation data is outside the asymptotic regime for this
power law, and the fit yields an effective exponent rather
than the trueg.

The above results indicate that withw increasing close to
wc, a decoupling of the diffusion time scale, as seen from the
mean-squared displacement, from the density-fluctuation-
relaxation time scale, as seen in the density correlation func-
tions, sets in. This can be illustrated without referring to any
fits by plotting the productDtsqd of the diffusion coefficient
D and thea-relaxation time scale[46]. For the latter, let us
choose the value obtained forq=7.8, as a typical represen-
tative of the local-order length scale. Figure 21 shows as
symbols the results from the BD simulation. One notices an
increase inDt by a factor of 2 to 3 within the density range
covered by the simulations. We have also checked that this
holds similarly for q=4.0 and q=9.0. The corresponding
MCT result is shown as the solid line in Fig. 21, which is
magnified in the inset of the figure. Here, the productDt also
increases with increasingw close towc, but only on the order
of 10%. One thus concludes that there is a rather large quan-
titative error in this quantity, although not necessarily a
qualitative one. MCT predicts thatDt approaches a finite
value asw→wc. As to whetherDt diverges or stays finite at
wc in the simulation, our data remain inconclusive. Note that
the values for the highest two packing fractions simulated are
relatively uncertain, as the scatter inDt indicates.

V. POLYDISPERSITY EFFECTS

Up to now, we have neglected the fact that the simulated
system is not strictly a single-component system. Instead,

FIG. 20. Self-diffusion coefficientsD as a function of the pack-
ing fractionw, as obtained from the Brownian dynamics simulation
(diamonds, with connecting lines to guide the eye) and from MCT
calculations(solid line). The dashed line indicates the MCT asymp-
tote,D~ swc−wdg.

FIG. 21. ProductD ·tsqd at wave vectorqd=7.8 for the BD
simulation (crosses, connected by lines to guide the eye), and for
the MCT curves(solid line). The latter curve has been transformed
along the horizontal axis according to Fig. 16. The inset shows a
magnification of the MCT result versuswMCT.
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some size polydispersity was needed in order to avoid crys-
tallization. In this section, we give a brief account of how
much we expect this small polydispersity to affect the results
discussed above.

We first examine the influence of polydispersity on the
equilibrium fluid structure. To this end, we have simulated a
monodisperse system of the same soft spheres as used in the
polydisperse simulations. We found such simulations pos-
sible for packing fractions up tow<0.54, above which crys-
tallization as monitored byQ6 sets in rather quickly. The
static structure factorSsqd at this state point is compared to
the one from the polydisperse system at the same density in
Fig. 22. As expected, the polydisperse system exhibits less
pronounced ordering, visible in reduced oscillation ampli-
tudes inSsqd. The effect is well explained by the PY approxi-
mation, as the inset of Fig. 22 demonstrates. There, the
(total-density) structure factor for the one-component hard-
sphere system is compared with that obtained from the five-
component mixture introduced in Sec. II B. One might ex-
pect the visible differences in the monodisperse and the
polydisperseSsqd, however small, to affect the MCT results
for wc. This would be true if both systems were treated as
one-component systems. But it is not necessarily true for a
full calculation of multicomponent MCT, using the full ma-
trix of partial structure factors instead of only the averaged
Ssqd, as we will discuss now.

Let us compare the results obtained forf s,csqd for the
one-component system with those of the five-component sys-
tem mentioned above. This comparison is included in Fig. 7,
where the dashed line shows the averagedf pd

s,csqd according
to Eq. (8). The thus obtained curve is slightly narrower than
the solid curve, representing the result of the one-component
calculation. Accordingly, the average localization length in-
creases slightly, by about 4%. From the above discussion we
conclude that this is a change in the right direction, but not
enough to account for the wave-number shift we had to ap-

ply to describe the density correlation functions with the one-
component system. Comparing with the Kohlrausch ampli-
tudesAsqd also shown in Fig. 7, we note that the intrinsic
error in determining the plateau values from the data is larger
than the differences between the two MCT curves.

The values ofwc obtained from the MCT calculations
with one, three, and five components show only minor dif-
ferences. While the one-component result iswc<0.5159, we
getwS=3

c <0.5153, andwS=5
c <0.5154. Similarly, the exponent

parameter only changes slightly between these systems: from
l<0.735 in the one-component system tolS=5<0.737 for
the five-component case. These changes inwc andl are sig-
nificantly smaller than the uncertainty in these quantities
coming from the approximation used for the static structure
factor. Note that the value ofwc decreases slightly in the
multi-component systems mentioned. This is consistent with
recent MCT predictions for a two-component system[33],
where it was found that for size ratiosdsmall/dlargeù0.8 the
critical point wc slightly decreases compared with the one-
component system. Only when the size ratio became more
extreme,dsmall/dlargeø0.6, say, did the MCT calculations
show a notable effect onwc. In this latter case, the values of
wc were found to be larger in the mixture than in the one-
component system. This increase is commonly expected for
polydisperse systems. But from our calculations we conclude
that such polydispersity-induced fluidization does not occur
for the present polydisperse size distribution, which in par-
ticular lacks any large- or small-radius “tails”.

A further comparison to the predictions of the multicom-
ponent MCT can be made by binning the particles of the
simulation according to their size into a different number of
bins. Let us demonstrate this for the case of three bins,a
=small (radii 0.9ødsmall,0.96667), medium s0.96667
ødmedium,1.03333d, and larges1.03333ødlargeø1.1d. The
thus obtained three tagged-particle correlation functions
fa

ssq,td can be compared to the three tagged-particle corre-
lation functions amenable to the MCT calculation in the
three-component system. Figure 23(a) shows as symbols the
results from a three-bin analysis of the BD simulation data at
w=0.58 andq=7.8. One notices that the largest particles
show the slowest decay, while the smallest particles decay
fastest, as is intuitively expected. In theb-relaxation win-
dow, one finds an ordering of the plateau values from small
to large particles, where the smallest particles show the
smallest plateau. Again this follows the expectation that the
particles are localized more tightly the larger they are. These
qualitative features are in agreement with the MCT results
for the three-component mixture, as can be inferred from the
symbols in Fig. 23(b). The ordering of the plateau values is
indicated by the horizontal solid lines which represent the
results forf a

s,csqd. Note that the differences in the relaxation
curves for the three components are more pronounced than in
the binned analysis of the polydisperse simulation, which
might be related to the fact that the particle size distribution
in the simulation is continuous. In the MCT calculation, the
alpha-relaxation time of the large particles, measured by
flarge

s sq,td=0.1, is at the wave number chosen slower by a
factor of about 1.48 compared to that of the small particles.
This change is slightly higher than in the simulation, where

FIG. 22. Averaged static structure factorSsqd for a monodis-
perse system(dashed lines) and the polydisperse system studied in
this work (solid lines) at the same state point. The main figure
shows the simulation results atw=0.54. The inset shows the Percus-
Yevick Ssqd at the respective MCT-critical packing fractionswMCT

c ,
for both the monodisperse(dashed) and a five-component system
(solid lines).
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the same trend applies with a factor of about 1.25.
The unbinned correlation function from thew=0.58 simu-

lation, averaged over all particles, is included for in Fig.
23(a), but on the scale of the plot, it coincides with the cor-
relation function for thea=medium bin. Thus, in a sense,
polydispersity effects “average out” in this quantity. A simi-
lar effect applies for the MCT results, but here, the small
difference in the critical packing fraction induced by the
polydispersity leads to a shift in the relaxation time scales
close to the glass transition. Still, the one-component cor-
relator calculated at a slightly higher packing fraction,w
=0.507, agrees with thea=medium correlator from the
three-component mixture atw=0.505 on the scale of the fig-
ure. This agreement is not too surprising, because the MCT

parameters quantifying the slow relaxation features apart
from wc do not change significantly between the monodis-
perse and the three-component system, as was mentioned
above. At lowerw, however, small differences become more
apparent. This can be seen in the three-componentw=0.4
correlator shown in Fig. 23(b) as a solid line. It compares
well with the result from a monodisperse calculation[the
dashed line in Fig. 23(b)], but at w=0.42; and one notices
somewhat different curve shapes. Again, these polydispersity
effects are even smaller in the simulations. The solid line in
Fig. 23(a) shows the simulation result for the polydisperse
system atw=0.54, which is compared to the result from the
monodisperse simulation at the same density, shown as a
dashed line. Here, the agreement between the two systems is
even better; and note that we did not have to adjust the pack-
ing fractions in this comparison.

Thus it appears that this way of representing the polydis-
perse system as a three-component mixture leads to a sys-
tematic overestimation of polydispersity effects. For the bi-
nary mixtures studied in Ref.[12], it was found that MCT
even underestimates the size of the observed mixing effects.
If this applies also to our case, the overestimation of poly-
dispersity effects by the three-component approach would be
even stronger.

VI. CONCLUSION

We have performed Newtonian(ND) and strongly
damped Newtonian dynamics(BD) simulations of a polydis-
perse quasi-hard-sphere system close to the glass transition.
The wave-vector dependent tagged-particle correlation func-
tions and the mean-squared displacement curves have been
analyzed using the mode-coupling theory of ideal glass tran-
sitions (MCT), in order to provide a stringent test of the
complete theory for a reference case.

To test that the simulation data show all the qualitative
features predicted by MCT close to the glass transition, we
have analyzed both the ND and BD data in terms ofa andb
scaling; cf. Figs. 4 and 11. This allows us to identify the time
domain, where one can expect MCT to give a quantitative
description of the data,t.10 in our units. In particular, both
ND and BD agree at long times up to a trivial time scale.
This universality of the structural relaxation is predicted by
the theory, and fulfilled in great detail by our simulation data.
In particular, theb-scaling parameters and those qualitative
features of the correction-to-scaling amplitudes we could
test, are independent on the type of short-time dynamics.
Similarly, an analysis of thea relaxation with stretched-
exponential fits demonstrates that the wave-number depen-
dent shape of this relaxation is in agreement with what one
expects from MCT. Other parameters, as for example the
critical-decay power law predicted as an asymptotic MCT
feature, cannot be extracted from the simulation data. The
analysis reveals that the highest density studied in our work,
w=0.59, shows systematic deviations from the MCT predic-
tions, and can thus not be explained by the theory.

The main purpose of this paper is to compare the simula-
tion data to the full solution of the MCT equations. Leaving
aside the small difference between the simulated polydis-

FIG. 23. (a) Correlation functionsfa
ssq,td for the BD simula-

tion, binned into three particle sizes,a=small (diamonds), medium
(plus symbols), and large(circles); see text for details. The data
refer to packing fractionw=0.58 andqd=7.8. The averaged quan-
tity fpd

s sq,td analyzed in the discussion in detail is plotted as a solid
line but coincides with thea=medium curve on the scale of the
figure. The solid and dashed lines decaying at shorter times are the
results forw=0.54 from the simulation of the polydisperse and the
monodisperse system, respectively.(b) As in (a), but results from
the MCT calculations for a three-component mixture at packing
fraction w=0.505 andqd=7.8. Again, the averagedfpd

s sq,td is in-
cluded as a solid line and is hidden by thea=medium curve. The
solid line decaying at shorter times is the averaged result from the
three-component mixture atw=0.4. For comparison, one-
component results atw=0.42 andw=0.507 are included as dashed
lines, the latter being obscured by the polydisperse-averagedw
=0.505 result.
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perse soft spheres and a true hard sphere system, this com-
parison is, in principle, free from any parameters. Since
MCT is an approximate theory, one expects, however, certain
deviations. We find that many of them can be accounted for
by allowing some of the physical parameters of the theory to
vary. This procedure allows us to better identify the cause for
such deviations.

We are able to achieve very good agreement between
theory and simulations if we allow for a smooth mapping of
packing fractions,w°wMCT, and a similar mapping of wave
numbers,q°qMCT. The reasons for the needed adjustments
are well understood. First, the critical point for the(ideal)
glass transition calculated within is too low. This is compen-
sated by mappingw. The mapping turns out to be almost
linear, and hence inessential in order to understand the slow
relaxation close to the glass transition as a function of the
distance to this transition. Second, we observe a small mis-
match in length scales between the simulation and the MCT
results. This can be accounted for by mappingq. The differ-
ence in length scales is typically of the order of 15%, and
only about 5% for the localization length estimated from the
mean-squared displacement. It is possible that these discrep-
ancies are to some extent due to the slight softness of the
simulated system.

Given these parameter mappings, MCT is able to describe
the BD-simulation data over most of the density range stud-
ied quantitatively on a 15% level, as demonstrated in Figs.
12–15. This extends down even to relatively short times,t
<1, and over a large range of length scales, from the
nearest-neighbor distance down toqd<20. At larger length
scales(smaller wave numbers), stronger deviations set in,
which are most pronounced in the long-time diffusive regime
of the mean-squared displacement, but also in the
b-relaxation regime; cf. Figs. 17 and 18.

One has to keep in mind that the kind of comparison we
have performed here is influenced by three conceptually dis-
tinct error sources:(i) deviations due to the comparison of a
slightly polydisperse system in the simulations to a strictly
monodisperse one in the theory;(ii ) deviations due to incor-
rect structure-factor input to MCT; and(iii ) deviations inher-
ent to the MCT approximation. In order to shed more light
on the quality of the MCT approximation itself, we have
tried to disentangle these three error sources.

The influence of polydispersity in the studied system is
negligible, as we have pointed out in Sec. V by comparing to
a three-component and a five-component system mimicking
the polydispersity distribution imposed in the simulations.

On the other hand, the second error source, due to ap-
proximations made in describing the static equilibrium struc-
ture, has to be considered carefully. We have chosen to base
most of our discussion on MCT results calculated from the
Percus-Yevick structure factor for the hard-sphere system,
because this is closest to a first-principles calculation. How-
ever, if one bases MCT on the structure factor obtained from
the simulation, one can improve the description of the data.
Most prominently, this influences the prediction of the criti-
cal point, which shifts fromwMCT

c <0.516 towMCT
c <0.585,

and thus surprisingly close to the experimentally determined
value. At the same time, many of the predictions based on
the PY structure factor remain quantitatively true, such as the

shape of thef csqd-versus-q distribution, or the asymptotic
shape of the correlation functions. This finding to some ex-
tent justifies our approach of adjusting the packing fractionw
in the PY-based MCT calculations. In principle, a further
error source connected with the static-structure input is the
factorization of three-point static correlations in the MCT
vertices, Eqs.(3d) and (5c). But we expect this purely tech-
nical approximation to have small influence for our system,
as simulation studies of a binary Lennard-Jones mixture[9]
suggest for systems dominated by hard-core repulsion.

The remaining discrepancies between the simulation re-
sults and the MCT predictions for the hard-sphere system are
likely to be the ones giving information about the quality of
the MCT approximation itself. These are as follows.

(i) The wave-vector variation of relaxation times. This is
less pronounced in MCT than it is in the simulations. For
large wave numbers, the BD simulation shows slower relax-
ation than expected from the theory, while at smallq, the
relaxation is faster than predicted by MCT. This indicates an
error of the theory in capturing the length-scale dependence
of the dynamics. The error at smallq might be more severe,
and is most dramatic when one considers the mean-squared
displacement, i.e., the diffusion coefficient. The theory pre-
dicts that all structural relaxation time scales are coupled
close to the glass transition. This implies that the product of
the diffusion coefficient and a typical intermediate-length-
scale relaxation time,D ·t, should approach a constant when
w approacheswc. For finite wc−w, MCT predicts a smooth
variation that is in qualitative agreement with the simulation
results; cf. Fig. 21. But the magnitude of this variation is
underestimated by a factor of 2.5. This can be viewed as a
quantitative error that has, however, a large impact on the
description ofD or the relaxation times at smallq. We could
not test whether the simulation behaves qualitatively differ-
ent to the MCT prediction asw→wc due to obvious con-
straints. In general, our results show that the improper treat-
ment of time-scale decoupling within MCT is not peculiar to
the diffusion coefficient itself, but rather sets in smoothly at
small q in the fssq,td.

(ii ) At short times the description of the relaxation curves
with MCT is insufficient. This is long since known, but it
remains an important question at how large times deviations
can still be seen. In our comparison of strongly damped
Newtonian dynamics, it appears that the tagged-particle cor-
relators can be fitted quite well even down tot<1, i.e., al-
most “microscopic” time scales. But a comparison with un-
damped Newtonian dynamics simulations reveals that there,
short-time corrections can occur even for relatively large
times, up tot<10 in our case. This can provide an explana-
tion for recent observations stating that for a binary mixture
obeying strongly damped colloidal dynamics, the MCT de-
scription extended quantitatively down to surprisingly short
times[13], whereas a similar comparison of Newtonian MD
data was satisfactory only in thea-relaxation regime[12].

(iii ) At the highest packing fraction analyzed in the
present work, more dramatic deviations between the simula-
tion results and MCT occur. They are most easily observed
as a violation ofa scaling, and a different scale behavior of
the corresponding relaxation time. Our simulations hint to-
wards possibly rare events that induce this behavior. But we
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have not been able to establish this within reasonable statis-
tics.
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